Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

http://sam.nitk.ac.in/

sam@nitk.edu.in

MA110 - Engineering Mathematics-1 Problem Sheet - 8

Double Integrals in Cartesian Coordinates

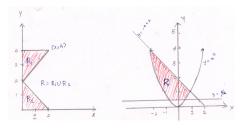
- 1. Approximate the integral
 - (a) $\iint_{R} (4x^3 + 6xy^2) dA$ over the rectangle $R = [1,3] \times [2,1]$ by partitioning R into six unit squares R_1, R_2, \ldots, R_6 and by selecting each (x_i, y_j) as the lower left corner of the rectangle R_j .
 - (b) $\iint_{R} (4x^2 + y^2) dA$ over the rectangle $R = [0, 2] \times [0, 3]$ by partitioning R into six unit squares R_1, R_2, \ldots, R_6 and by selecting each (x_i, y_j) as the upper right corner of the rectangle R_j .
- 2. Evaluate $\iint_R \sin(y^3) dA$, where *R* is the region bounded by $y = \sqrt{x}$, y = 2, and x = 0.
- 3. What region *R* in the *xy*-plane maximizes the value of

$$\iint_R (4-x^2-2y^2) \, dA \ ?$$

Give reasons for your answer.

- 4. Evaluate the follwing improper integrals as iterated integrals:
 - (a) $\iint_D \frac{1}{(x+y)^2} dA$, where *D* is the region $0 \le x \le 1$, $0 \le y \le x^2$. (b) $\iint_R e^{-x^2} dA$, where *R* is the region where $x \ge 0$, and $-x \le y \le x$.
- 5. Find the volume of the solid enclosed by the cylinders $z = x^2$, $y = x^2$ and the planes z = 0, y = 4.
- 6. Find the average distance from points in the quarter-disk $x^2 + y^2 \le a^2$, $x \ge 0$, $y \ge 0$, to the line x + y = 0.
- 7. Evaluate following iterated integrals:

(a)
$$\int_{1}^{3} \int_{-y}^{2y} xe^{y^3} dx dy$$
 (b) $\int_{0}^{2} \int_{-x}^{x} e^{-x^2} dy dx$ (c) $\int_{1}^{2} \int_{0}^{x^2} \frac{y^2}{x} dy dx$


8. Using double integral, find the volume of the solid bounded by $x^2 + y^2 = 16$ and $y^2 + z^2 = 16$.

9. Find the volume of the solid bounded by the parabolic cylinder $x^2 = 4y$ and the planes z = 0and 5y + 9z - 45 = 0.

- 10. Find the volume of the solid in the first octant bounded by the circular paraboloid $z = x^2 + y^2$, the cylinder $x^2 + y^2 = 4$ and the co-ordinate planes.
- 11. Change the order of integration in the following integrals (sketch the regions):

(a)
$$\int_{0}^{a} \int_{0}^{\sqrt{2ay-y^2}} f(x,y) dx dy$$
 (b) $\int_{0}^{1} \int_{y^2}^{y^{1/3}} f(x,y) dx dy$ (c) $\int_{0}^{1} \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx dy$

12. Evaluate $\iint_{R} xy^2 dA$, where *R* is the region as shown below:

13. Evaluate (using Cartesian coordinates) $\iint_{R} (x^2 + x^4 y) dA$ where $R = \{(x, y)/1 \le x^2 + y^2 \le 4\}.$